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I. Cimráka, M. Gusenbauerb, T. Schreflb

aDep. Soft. Technologies, Faculty of Management Science and Informatics, University of Zilina, Slovakia
bSt. Poelten University of Applied Sciences, St. Poelten, Austria

Abstract

We investigate a mathematical model describing the flow of a liquid in a microchannel. The
model incorporates immersed objects in the fluid as well as fixed obstacles and boundaries of
the microchannel. Objects can have different elastic properties, including solid objects and
deformable objects. The flow description accounts for all types of mechanical interactions:
fluid-object, object-object, fluid-walls, and object-walls interactions.
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1. Introduction

Microfluidics appeared during the rapid development of inkjet printheads in the 1980s.
Since then, the area of microfluidic applications substantially expanded [1]. Nowadays,
advances in microfluidics technology are reforming molecular biology procedures. They
enable new methods in enzymatic analysis, DNA analysis, and proteomics [2]. An emerg-
ing application area for biochips is clinical pathology, especially the immediate point-of-
care diagnosis of diseases. In addition, microfluidics-based devices, capable of continuous
sampling and real-time testing of air/water samples for biochemical toxins and other dan-
gerous pathogens, can serve as an always-on ”bio-smoke alarm” for early warning. Further
applications of microfluidic devices are in optofluidics, evolutionary biology [3] and cell
biological research [4].

Microfluidic devices enable the precise control of the decreasing fluid volumes on the one
hand and the miniaturization of the size of a fluid handling system on the other hand. The
behaviour of fluids at the microscale can differ from ’macrofluidic’ charcteristics because
the system starts to be dominated by factors such as surface tension, energy dissipation,
and fluidic resistance.

The computer simulations of microfluidic devices significantly improve the design pro-
cess. The simulations are essential to minimize development time and costs and help the
designers get from concept to prototype quickly and efficiently.

For example, a biologist may want to separate deformable cells of type A from the
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suspension containing cells of two types A and B. He knows that A cells are a little bit
larger and stiffer than B cells. Therefore he wants to use a filter with fixed-sized holes.
To determine the size of the holes, he sets up a simulation toolbox and lets the computer
decide which hole size leads to best sorting results.

Another example is the simulation procedure telling the scientist how the flow will be
affected when a micropost is placed into a microchannel and thus how the capture efficiency
of the device will be changed.

We aim at developing a simulation environment that tracks the movement of cells or
other immersed objects as they move in the microchannel. The software calculates the
interactions with each other, the channel walls, the fluid, and external forces that may be
applied to manipulate the immersed objects. The simulation tracks the time evolution of
both the fluid and suspended objects. The mathematical algorithms used by the software
tend to be readily applied, allowing calculations in a straightforward manner and making
it easy to incorporate new forces.

We extend the existing software package ESPResSo [5] (An Extensible Simulation
Package for Research on Soft Matter Systems). This package is primarily used for particle
movement simulations with broad range of applications, such as dynamics of copolymers [6],
DNA translocation [7], and other. We implement routines that allow a flexible description
of immersed objects together with all necessary elastic and mechanical interactions. In
this way, the simulation framework will be able to cover a broad range of microfluidic
applications with different flowing objects, e.g. blood cells in blood flow, bacterias in
water, microorganisms in drinks, and other.

In this research we focus on biomedical applications in the isolation of tumor cells.
Circulating tumor cells (CTCs) are disseminated from the site of disease in metastatic or
primary cancers, including breast, prostate, lung and other types of cancer. CTCs can be
identified and counted in the peripheral blood of patients. The biological analysis of CTCs
using lab-on-chip technologies effectively diagnose the disease, determine personalized ther-
apies and adjust treatments in real time. Because of their rare occurrence (a few CTCs
per 1 mL of blood) CTCs must be isolated from the blood sample. Recent developments
and research of microfluidic devices made a significant breakthrough in the detection and
filtration of CTCs from blood. One of the isolation approaches is based on a filtration
by size of the cells. Generally, CTCs are larger and more stiffer than healthy red blood
cells (RBCs), and white blood cells are even larger. Therefore a series of microfliters can
be used to subsequently filter first the largest white blood cells and then mid-sized RBCs.
The isolation of the RBCs based on the size is addressed in [8]. We are in the early stage
of this research.

Content of the paper

The paper is organized as follows. In Section 2 we describe the general model for fluid
motion, for description of immersed objects and for the coupling of the fluid and immersed
objects. We provide a series of tests that calibrate the parameters for fluid-structure
coupling involving the study of drag coefficients for oblate and prolate ellipsoids.
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The concrete model of a red blood cell is presented in Section 3. All elastic properties
are properly described. The core of the paper is presented in Section 4. Here, the coupling
of the fluid and the immersed objects is calibrated and proper friction coefficient is deter-
mined. Next, the RBC model parameters are calibrated using the experimental data from
literature.

In this paper we focus on building the model of a RBC, its calibration and implemen-
tation in ESPResSo. General features of simulation environment will be explained on the
example of cancer cell isolation. We show an example of a simulation of a cell passage
through a narrow channel. Such kind of simulations will be used for determination of the
minimal gap sizes throug which a healthy RBC can pass while a CTC is blocked. These
results will be used in the design process of new devices in our upcoming works.

2. Model

To describe the mechanical processes inside a microfluidic device, we need to take into
account the following phenomena:

Fluid dynamics. The dynamics of the fluid will be governed by the lattice-Boltzmann
method (LBM). The LBM is fast and easy parallelizable, which will be necessary for
simulations including high number of immersed objects.

Immersed objects. Immersed objects will be represented by the Immersed Boundary
Method (IBM), which is broadly used to describe the boundary of an object without
the necessity to change the discretization mesh. The boundary of an object is rep-
resented by a triangular mesh containing points on the surface of the object. These
points are moving in the space under the influence of fluid-object interaction forces,
as well as mechanic, elastic, and magnetic forces. For each type of immersed object,
different forces are applicable. For example, a healthy RBC is highly deformable, so
the stiffness contribution will be low, whereas the cancer cells are more rigid so the
stiffness contribution will be higher.

Coupling of the fluid and the immersed objects. Interactions between fluid and ob-
jects will be simulated using the drag force acting on an obstacle moving in the fluid.
This principle is well-established and already implemented in ESPResSo.

2.1. Fluid dynamics by the lattice-Boltzmann method

Instead of solving the Navier-Stokes equations, which solve the conservation equations
of macroscopic properties, the LBM models [9] the fluid consisting of fictive particles. Such
particles perform consecutive propagation and collision processes over a discrete lattice
mesh. The unknown in the LBM is the distribution function for fictive particles. Macro-
scopic properties can be recovered by explicit formulas involving the unknown distribution
function n.

Consider a lattice placed over the three-dimensional domain and consisting of cubic
cells. This lattice creates an Eulerian grid which is fixed over the entire simulation. The
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Figure 1: Triangular mesh representing the boundary of a RBC deformed in the fluid flow.

variable of interest in the LBM is ni(x, t) which is the particle density function for the
lattice point x, discrete velocity vector ei, and time t. We use the D3Q19 version of
the LBM (three dimensions with 19 discrete velocities, so i = 1, . . . , 19). The governing
equations for the LBM, in the presence of external forces, are

ni(x+ δt, t+ δt) = ni(x, t)−
1

τ
(ni(x, t)− neq

i (x, t)) + fi(x, t), (1)

where δt is the time step, τ denotes the relaxation time, neq
i is the equilibrium function

depending on macroscopic variables velocity u and density ρ, and fi is the external force
exerted on the fluid. The macroscopic quantities such as velocity u and density ρ are
evaluated from

ρ(x, t) =
∑

i

ni(x, t) and ρ(x, t)u =
∑

i

ni(x, t)ei.

2.2. Immersed objects

The immersed objects are characterized by their boundaries. The boundaries are rep-
resented with a set of immersed boundary (IB) points, which may be advected by the fluid
interaction. This method is especially suitable for the simulation of the deformation of im-
mersed boundaries by fluid-structure interaction, and it has been widely used in biological
fluid dynamics [10].

To take the mechano-elastic properties of the immersed objects into account, a trian-
gular mesh is created on top of the IB points, see Figure 1. Geometrical entities in this
mesh (edges, faces, angles between two faces, . . . ) are used to model stretching, bending,
stiffness, and other properties of the boundary.

For the motion of the IB points we use the Newton equation of motion

mib
d2Xj

dt2
= Fj , (2)

where mib is the mass of the IB point, Xj is the position and Fj is the force exerted on
the particular IB point. The source of Fj is twofold: fluid-structure interaction, which is
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Figure 2: Two dimensional case: Immersed boundary (dashed line) consists of IB points (denoted by
numbers 1,2,3,...) creating a nonstructured flexible mesh. This mesh is placed over the fixed rectangular
fluid grid (with grid nodes denoted by letters A,B,C,D,...). Once the IB point 2 is located in the rectangle
ABCD, the fluid-structure interaction takes place between four grid points ABCD and the IB boundary
point 2.

described in Section 2.3, and elasto-mechanical properties of immersed objects. The latter
are described in Section 3 for the case of red blood cells.

The mass of the IB point is a parameter that does not have any particular physical
meaning. It is a free parameter that must be calibrated to fit experimental data. This
parameter is the same for all IB points of one immersed object, however it will differ for
different immersed objects.

2.3. Coupling of the fluid and the immersed objects

Equations (1) and (2) describe the motion of the fluid and of the immersed objects,
respectively. Both motions influence each other so we need to couple the two equations.
To do so we use an approach from [9] with a drag force that is exerted on an object moving
in the fluid. Analogous to the Stokes formula for a sphere in a viscous fluid we assume the
force exerted by the fluid on one IB point to be proportional to the difference of the velocity
v of the IB point and the fluid velocity u at the same position, the vectorial equation for
this relation reads as

Fj = ξ(v − u). (3)

Here ξ is a proportionality coefficient which we will refer to as the friction coefficient. It
is given in Nsm−1 units. In the previous expression, the velocities v and u are computed
at the same spatial location, whereas we posses u in fixed Eulerian grid points and v in
moving Lagrangian IB points. Therefore for computation of u in the IB point, we use
linear interpolation of the u values from nearby fixed grid points, see Figure 2.
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There is also an opposite effect: not only fluid acts on the IB point, but also an IB point
acts on the fluid. Therefore we need to transfer the opposite force −Fj back to the fluid.
We distribute Fj from the location of the IB point to the nearby grid points. Distribution
is inversely proportional to the cuboidal volumes with opposite corners being the IB point
and the grid point. In other words, if the IB point is closer to the grid point, then a larger
contribution will be assigned to that grid point [9].

The overall behaviour of an immersed object will also be influenced by the number (or
the density) of the IB points on its boundary. The influence of the liquid on the movement
of the object is through the drag force exerted on the boundary. This drag force should
be distributed uniformly across the surface and therefore the density of IB points over the
surface should be approximately fixed. So if we double the surface of the immersed object
we should also double the number of IB points. Therefore we must keep the surface-to-
nodes ratio constant when generating meshes for immersed objects with different size.

Another issue influencing the behaviour is the mass of the IB points. When the fluid
pushes the object and tries to change its trajectory, the effect must be dependent on the
weight of the object. So if we double the volume of the object, we should double also the
mass of individual IB points.

3. Blood cell model

We demostrate the IB method on a red blood cell model. The RBC consists of a cell
membrane and a liquid cytoplasm. The RBC membrane consists of two layers, the plasma
phospholipidic bilayer and the cytoskeletal spectrin network. The plasma bilayer is believed
to be responsible for the constraints of constant area. It can rearrange itself very easily, and
is often referred to as a fluid membrane. The network of proteins attached underneath the
plasma layer is responsible for the shear resistance (stretching) and bending. The whole
membrane also contains ionic pumps maintaining the inner volume of the RBC constant.

The RBC membrane is only few molecules thick, and hence it is frequently modelled
as a two dimensional sheet with some thickness. As we have mentioned, we model the
membrane with triangular mesh. The elastic properties of the membrane can be described
in terms of four moduli: stretching modulus, bending modulus, area expansion modulus
and volume expansion modulus.

The relaxed shape of a RBC has a biconcave shape that can be explicitely expressed
by

y = 0.5(1− x2)1/2(c0 + c1x
2 + c2x

4), −1 ≤ x ≤ 1,

where c0 = 0.207, c1 = 2.002, c2 = 1.122, equation acquired from [11]. We denote L0

AB the
distance between two IB points A and B in the relaxed state. The following expressions
for elastic forces are from [12].

Stretching modulus

The membrane of a RBC has a hyperelastic neo-Hookean behaviour. This behaviour is
reproduced by the nonlinear spring model. For each edge between two IB points A and B
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we define LAB the distance between A and B, by ∆LAB we denote deviation from relaxed
state, that is ∆LAB = LAB −L0

AB. The stretching force in the IB points is computed from

Fs(A,B) = ksκ(λAB)
∆LAB

L0

AB

nAB.

Here, nAB is the unit vector pointing from A to B, ks is the stretching constant, λAB =
LAB/L

0

AB, and κ is a nonlinear function that resembles neo-Hookean behaviour

κ(λAB) =
λ0.5
AB + λ−2.5

AB

λAB + λ−3

AB

.

Bending modulus

The tendency of a RBC to maintain the resting shape is governed by prescribing the
preffered angles between the neighbouring triangles of the mesh. One can argue, that a
scaled cell will have all angles between the triangles preserved. However, the scaling of the
cell will be prevented by e.g. volume constraint or, by imposing preffered edge lengths by
the stretching modulus.

Denoting by θ0 the angle between two triangles in the resting shape, we compute the
deviation of this angle ∆θ = θ − θ0 and define the bending force for a triangle ABC

Fb(ABC) = kb
∆θ

θ0
nABC .

Here, nABC is the unit normal vector to the triangle ABC. This force is assigned to the
vertex not belonging to the common edge. The opposite force divided by two is assigned
to the two vertexes lying on the common edge.

Area constraint modulus

We compute the deviation of the triangle surface SABC from the triangle surface in
the resting shape ∆SABC = SABC − S0

ABC . We impose the area constraint by assigning a
shrinking/expanding force for every vertex

Fa(A) = −ka
∆SABC

SABC

wA,

where ka is the area constraint coefficient, and wA is the unit vector pointing from the
centroid of triangle ABC to the vertex A. Similarly we assign the analogical forces to
vertexes B and C.

The conservation of local area is too restrictive and we add the global area constraint
by introducing a global term

Fa(A) = −

(

kal
∆SABC

SABC
+ kag

∆S

S

)

wA.

Here, the area constraint coefficient ka is split into two coefficients, the global area coeffi-
cient kag and the local area constraint kal.
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Volume constraint modulus

We compute the deviation of the global volume of the cell V from the volume in the
resting shape ∆V = V − V 0. For each triangle we compute the following force

Fv(ABC) = −kv
∆V

V 0
SABC nABC ,

where SABC is the area of triangle ABC, nABC is the normal unit vector of plane ABC,
and kv is the volume constraint coefficient. The volume of one cell is computed from

V =
∑

ABC

SABC nABC · hABC ,

where the sum is computed over all triangles of the mesh and hABC is the normal vector
from the center of triangle ABC to any plane which does not cross the cell. The force
Fv(ABC) is equally distributed to all three vertexes A,B,C.

The theoretical expressions for all elastic moduli are from [12]. Practically, we needed
to include them in the simulation environment. We implemented five different interactions
(area constraint has been split into two separate constraints, the local and the global
area constraint) in the ESPResSo software. Our implementation however had to conform
the parallel structures of ESPResSo. The stretching force was already included. The
implementation of the bending and the local area constraints are novel, nevertheless the
technique was straightforward. The global area constraint and the volume constraint,
however require a different approach. Significant difference is in that those two constraints
use a global information about the whole blood cell, whereas all the computations are
performed locally on different computer nodes, when run in parallel. It can thus occur,
that the mesh nodes of one blood cell are maintained by two or more computer nodes.
Therefore, a two-step approach had to be used, first, each computer node computes the
partial volume. After all computer nodes added their contribution, the complete volume
of the cell can be distributed to each computer node and the local forces can be calculated.
This solution has been designed with the help of ESPResSo developers [13].

The implemented elastic moduli are specific for the red blood cells. Some of them
can be used for characterization of other types of immersed objects. For example, vesicles
have only three constraints (volume, area and bending) and capsules only two constraints
(volume and stretching). There are also other types of objects for which another specific
interactions have to be implemented. For example rigid objects, or solid but deformable
objects, all these objects need special treatment.

Finally we emphasize that the presented model of a RBC contains 5 parameters that
influence the actual behaviour of the cell:

ks - stretching coefficient
kb - bending coefficient

kal - local area constraint
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kag - global area constraint, and
kv - volume constraint

Each of these parameters influences the elastic behaviour of the cell. The stretching
and bending coefficients are biologically justified and there exists an approximate value
for each parameter: ks is of the order 5 × 105pNµm−1 and kb is of the order 10−1pNµm
(parameters from [12, 14]). These approximate values in lattice-Boltzmann units are ks =
0.005 and kb = 0.001. However the approximate value gives us only the order of magnitude
and the actual value needs to be identified from real experiments. Further, the other
three parameters have the following approximate values: kv = 0.33µNs cm−1, kag = 5 ×
105pNµm−1, kal = 5× 103pNµm−1. They are more phenomenological and also need to be
calibrated.

To calibrate our model we need to perform calibration tests with experimental data.
These tests are described in Section 4.

4. Calibration

The first experiment described in Section 4.1 involves the calibration of general fluid-
object interactions. As described in Section 2.3, the influence of the fluid on the immersed
objects and vice versa is maintained through the drag force given by (3). The parameter
describing the strength of this interaction is the friction coefficient ξ. However the friction
cefficient is directly linked to another parameter, the mass of the IB points mib appearing
in (2). For calibration of these two parameters we use an experiment involving the motion
of a moving ellipsoid in a static liquid.

Next we calibrate our cell model in Section 4.2. The experiment involves the stretching
of a red blood cell on its opposite sides with a known force. The cell prolongates and the
cell’s horizontal and vertical diameters are measured.

4.1. Friction coefficient and mass calibration

We simulate the following experiment: We put a ball with some initial velocity v0 to a
static fluid. Fluid exerts a drag force on the ball. Under the influence of this force, the ball
slows down. We compute the velocity as a function of time. We assume that the density
of the ball is the same as that of the surrounding fluid.

Exact solution for velocity

According to the classical theory for the motion of a spherical object in the Stokes
creeping flow, the drag force exerted on a ball can be expressed as

Fd = −6πνrvK, (4)

where r is the radius of the ball, ν is the dynamic viscosity of the fluid, v is the relative
velocity of the ball with respect to the fluid and K is the shape factor. For the case
of a sphere K = 1, while K is different from one when a prolate or oblate ellipsiod is
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considered instead of a ball. This shape factor can be calculated from [15, 16]. Taking the
basic equation of motion of an object with mass m under the influence of force F we have

mx′′ = F,

where x is the position of the ball. Setting F = Fd we can compute the velocity of the ball
v = x′ from

mv′ + 6πνrvK = 0,

with the initial condition v(0) = v0. The solution of the previous differential equation is
a simple exponential function and thus the exactly computed velocity denoted by vex can
be expressed as

vex = v0 exp(−
6πνrK

m
t). (5)

Simulated velocity

We set the experiment using the real parameters for blood plasma taken from online
resources [17, 18]. The actual values are provided in lattice-Boltzmann units. The sim-
ulation is done over the finite time interval. The initial velocity v0 is set such that the
Reynolds number satisfies the condition for Stokes creeping flow. The rest parameters for
the experiment are

• channel dimensions 40x25x25

• viscosity of the fluid ν = 1.5

• density of fluid ρ = 1.025

• initial velocity of the ball v0 = 0.1

We will simulate the movements of oblate and prolate ellipsoids. The transversal
crossection will always be a circle with radius 4 and the axial radius will be equal to 2 and
to 3 for oblate ellipsoids, to 4 for a ball, and to 5, 6, 7 and 8 for prolate ellipsoids, see
Figure 3. Different values of a give different values of the shape coefficient K appearing in
(4). The values of K are listed in the third column of Table 1.

In view of the remarks from the end of Section 2.3, we set the surface-to-nodes ratio
to a fixed number. This number is chosen arbitrarily, however we have in mind that the
triangular mesh should not be too sparse. Then we have generated 7 different triangular
meshes for ellipsoids with axial radius a = 2, 3, 4, 5, 6, 7, 8 and transversal radius b = 4.
The corresponding surface-to-nodes ratios are listed in Table 1.

With this experiment we need to calibrate two parameters: the friction coefficient ξ
and the mass of the IB points mib. These two parameters are however linked together by
equations (2) and (3). Within one simulation with a single object if we double both mib

and ξ, simulation gives the same results. Therefore the friction coefficient and the mass
of the IB points can be in the case of a single object rescaled by an arbitrary number.
Software implementation is more favourable for flexible mass of the IB points, therefore
we fix the friction coefficient to value 0.01 and we determine the correct value of mib.
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We start with recovering mib for a sphere. The recovered value is mib = 0.018. This
value was determined using the least square method by minimization of the distance func-
tion defined by

|vex − vsim| =

(

∑

i

(vex(ti)− vsim(ti))
2

)
1

2

,

where the summation is done over finite number of time instances discretizing the time
interval. We have discretized the time interval with 300 time steps, however in Figure 4
we have displayed only fraction of these values for better visibility. The dependence of
the distance function on mib is a convex function with unique minimizer equal to 0.018.
The minimizer was determined with the accuracy of two valid decimal places. We should
emphasize that the correct mass of IB points is dependent on the viscosity of the liquid as
well as on its density.

Figure 3: Oblate (left) and prolate (right) ellipsoid and the corresponding radii. The movement of ellipsoids
in the fluid is from left to right.

a b K surface volume nodes surf/nodes ξ mib

2 4 0.90 138.75 134.04 431 0.322 0.01 0.0133
3 4 0.95 168.53 201,06 524 0.322 0.01 0.0190
4 4 1.00 201.06 268,08 624 0.322 0.01 0.0240
5 4 1.05 235.31 335,10 730 0.322 0.01 0.0285
6 4 1.10 270.69 402,12 840 0.322 0.01 0.0325
7 4 1.15 306.88 469,15 952 0.322 0.01 0.0365
8 4 1.20 343.65 536,17 1068 0.322 0.01 0.0400

Table 1: Parameters of simulated ellipsoides. We show the axial radius a, the transversal radius b, the
shape factor K, the surface and the volume of the ellipsoid, the number of nodes in the mesh, the surface-
to-nodes ratio, the friction coefficient ξ, and the recovered value of the mass of the IB points mib.

We further continue to check if the recovered value of mib is correct. We performed the
determination of mib for six other objects varying from oblate ellipsoid to prolate ellipsoid.
The results are summarized in Table 1. The recovered values of mib are in the last column.

In Figure 4 we see the graph of simulated velocities vsim for different ellipsoides from
Table 1. For every ellipsoid we used a similar surface-to-node ratio.

In view of the remarks from the end of Section 2.3, we know that the increase of the
volume should result in linear increase of mib. The dependence of recovered values for mib
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on the volume of the ellipsoids is depicted in Figure 5. We can see that the dependence is
approximately liear with the following formula

mib(vol) = 6.58× 10−5vol + 5.61× 10−3,

which verifies our simulations.
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Figure 4: The time evolution of simulated velocities vsim (displayed with symbols) compared with exact
velocities vex computed from (5) (displayed with lines). Velocities were simulated for different shapes
corresponding to axial radii a = 2, 3, 4, 5, 6, 7, 8. Other parameters including the number of IB points and
mib are listed in Table 1.

4.2. Cell calibration

We would like to calibrate the parameters for a blood cell. In the previous section we
concluded that the surface-to-nodes ratio will be fixed number equal to 0.322. A blood
cell with a typical dimension, depicted in Figure 6, has the axial diameter equal to 2.5µm
and transversal diameter to 7.92µm. The surface is approximately 131 and volume 90.
Therefore we generate a triangular mesh with 400 mesh nodes to discretize the surface of
the blood cell keeping the surface-to-nodes ratio equal to 0.322. The volume is 90 and thus
to conform to a linear dependence of volume and mass of the IB points from Figure 5 we
must set mib = 0.00005 × 90 + 0.004 = 0.0085 and the friction coefficient needs to be set
to ξ = 0.01.

We have mentioned before that ξ and mib are linked by equations (2) and (3) and
that for the simulation with a single object they can be rescaled. We thus rescale these
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Figure 5: The linear dependence of mass of IB points on volume of ellipsoids.

two coefficients such that mib = 1 and ξ = 1.17. These values are used in our further
simulations.

To calibrate the elastic properties of the blood cell we simulate the stretching exper-
iment from [14] involving optical tweezers. This laser beam technique is based on the
manipulation resulting in the object being trapped by the laser beam. For example, a
dielectric bead of silica when trapped by a laser beam can be physically moved as the laser
beam is displaced. If such a bead is attached strongly to the surface of a cell, it serves
as a handle or grip and displaces the cell membrane. The optical tweezers method can
be used to stretch the cell directly in one or more directions by trapping beads that are
strategically attached to the cell surface through specific or non-specific binding [14].

As depicted in Figure 7, a force is being induced on the opposite sides of a cell through
two silica beads. For different forces ranging from 67pN up to 193pN we compute the
axial and transverse diameter of the deformed cell. In Table 2, we present values from [14]
denoted by dfax and dftr with f = 67, 130 or 193pN .

It is too optimistic to hope that we can recover the exact values from Table 2. Therefore

Figure 6: Dimensions of a red blood cell: axial diameter h = 2.5µm and transversal diameter d = 7.8µm.
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force exterted on cell 67pN 130pN 193pN
axial diameter d0ax 12.34 14.17 15.3
transverse diameter d0tr 5.05 4.53 4.29

Table 2: Measured dimensions of a RBC under the stretching test.

we use a least square method for determination of ks, kb, kal, kag and kv. For simplicity k

denotes the five-dimensional vector

k = (ks, kv, kal, kag, kv).

Using our simulation tool we are able to compute the values of dax and dtr for arbitrary k

and arbitrary force f . Therefore the axial and transverse diameters become functions of k
and f

dax = dax(k, f), dtr = dtr(k, f).

We can build up a cost function F computed as the square distance of simulated dax(k, f),
dtr(k, f) and the data given in Table 2

F(k) =
∑

f=67,130,193

(dax(k, f)− d0ax(f))
2.

In such a way we can assign a single numerical value for every set of parameters k that
tells us how close those parameters correspond to reality. If F is zero then we found the
correct parameters, which is however rarely true.

We started the determination of optimal k by noticing that the sensitivity of F to area
coefficients and volume coefficient was low. Therefore we first subsequently determined the
values of kal, kag, kv that kept constant the local and global surface, and the volume. For
this we needed about 20 runs for each parameter. In this way we determined the optimal
values of kal, kag, kv which were used in further determination of ks and kb.

Since the sensitivity to the stretching and the bending coefficients was high, the de-
termination of these two parameters had to be performed more carefully. We first set 49
estimates of couple (ks, kb) where both parameters took 7 values covering large range of

axial diameter

silica microbeads adhered to cell

human red blood cell
axial diameter

transverse diameter

Figure 7: Scheme of the stretching test.
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stretching ks 0.008
bending kb 0.0016
local area kal 0.01
global area kag 1.0
volume kv 10.0

Table 3: Optimal values of elasticity parameters for a healthy RBC.

several orders of magnitude. In this manner we detected few couples (ks, kv) that gave sig-
nificantly lower values of F . These couples are however only very coarse approximations
of optimal values.

Then for each coarse approximation we set 7 values around it. We have run again 49
simulations to tune the coarse approximation and we have thus obtained medium-coarse
approximation by identifying those couples giving significantly lower values of F than the
others.

Finally we have run final round. For each medium-coarse approximation we have again
set 7 values around it and we have run 49 simulations to tune the optimal values. In this
way we have determined quite precise approximation of the optimal values. In the final
round of simulations, the sensitivty of F was very low since the range of values was quite
restricted.

In Table 3 we present optimal values of k. The optimal values slightly differ from the
approximate values ks = 0.005, kb = 0.001 obtained from [12, 14].

Using the parameters obtained in the previous sections we simulated the passage of a
cell through a narrow channel. In Figure 8, a red blood cell is depicted on its way through
the channel. In this example we used only one processor for the computations of the cell
movement. The detailed analysis of parallel structures needed for cell description will be
published on our future publications, as well as detailed results concerning minimal gap
size through which the healthy red blood cell can pass.

For modelling of more cells one needs to address the collisions between the cells. In our
forthcoming research we will use the potential approach that defines a potential between
the cells dependent on their position. In case of a collision the potential generates forces
repelling two colliding cells.

Figure 8: Simulation of a RBC passage through a narrow channel.
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5. Conclusions

We have investigated a mathematical model describing the flow of a liquid with im-
mersed objects in a microchannel. The model is composed of two components – the flow
model, governed by the Lattice-Boltzmann method, and the immersed object model, gov-
erned by immersed boundary method. These two components interact via the drag force.
The model for immersed objects is general, the objects can have different elastic properties.

Further we focus on blood flow modelling and we introduce model of a triangulated
red blood cell. We describe in detail the implementation of elastic properties of a RBC
and we list five parameters of the model that can be tuned. Afterwards we calibrate these
parameters to fit the experimental data.

The presented model is easy adaptable for other cells appearing in the blood flow.
Different cells have different elastic properties and thus the proper parameters need to be
calibrated. Further direction for the research will cover the adhesion properties of the cells.
The adhesion, or affinity, is used when antibody-covered surfaces appear in the flow with
the aim of capturing the CTCs. To model the adhesion process, one needs to ”translate”
the chemical process into representation by forces so that it can be implemented in the
model. This is a challenging interdisciplinary task that will be addressed in the forthcoming
research.
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